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Figure 1. We introduce Splatt3R, a feed-forward model that can directly predict a 3D Gaussian Splat from a stereo pair of images with
unknown camera parameters. We base our work on MASt3R, and following their simple architecture, we avoid any explicit prediction of
camera poses, intrinsics or monocular depth. Splatt3R can perform both interpolation and extrapolation of novel views from the input.

Abstract

In this paper, we introduce Splatt3R, a pose-free, feed-
forward method for in-the-wild 3D reconstruction and novel
view synthesis from stereo pairs. Given uncalibrated natu-
ral images, Splatt3R can predict 3D Gaussian Splats with-
out requiring any camera parameters or depth information.
For generalizability, we build Splatt3R upon a “founda-
tion” 3D geometry reconstruction method, MASt3R, by ex-
tending it to deal with both 3D structure and appearance.
Specifically, unlike the original MASt3R which reconstructs
only 3D point clouds, we predict the additional Gaussian at-
tributes required to construct a Gaussian primitive for each
point. Hence, unlike other novel view synthesis methods,
Splatt3R is first trained by optimizing the 3D point cloud’s
geometry loss, and then a novel view synthesis objective. By
doing this, we avoid the local minima present in training 3D
Gaussian Splats from stereo views. We also propose a novel
loss masking strategy that we empirically find is critical for
strong performance on extrapolated viewpoints. We train
Splatt3R on the ScanNet++ dataset and demonstrate ex-
cellent generalisation to uncalibrated, in-the-wild images.

Splatt3R can reconstruct scenes at 4FPS at 512×512 reso-
lution, and the resultant splats can be rendered in real-time.

1. Introduction

We consider the problem of 3D scene reconstruction and
novel view synthesis from sparse, uncalibrated natural im-
ages in just one forward pass of a trained model. While
recent breakthroughs have been made in 3D reconstruction
and novel view synthesis by using neural scene represen-
tations, e.g. SRN [47], NeRF [41], LFN [48], and non-
neural scene representations, e.g. 3D Gaussian Splatting
(3D-GS) [29], these methods are far from being accessible
to casual users, due to expensive, iterative, per-scene opti-
mization procedures, which are often slow and are unable
to utilize learned priors from training datasets. More im-
portantly, reconstruction quality is poor when trained from
only a pair of stereo images, as these methods require a
dense collection of dozens or hundreds of images to pro-
duce high-quality results.
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To mitigate these issues, generalizable 3D reconstruc-
tors [8, 12, 16, 27, 56, 63], aim to predict pixel-aligned fea-
tures for radiance fields from sparse calibrated images using
feed-forward networks. These models are trained by differ-
entiably rendering the predicted, parameterized represen-
tations from target viewpoints and supervising them with
ground truth images captured from the same camera pose.
By learning priors across large datasets of input scenes,
these models avoid the failure cases of traditional per-scene
optimization from sparse images. To avoid the expensive
volumetric processing in NeRF, several feed-forward Gaus-
sian Splatting models [7, 10, 51, 52, 68] have been pro-
posed to explore 3D reconstruction from sparse views. They
use a cloud of pixel-aligned 3D Gaussian primitives [29]
to represent the scene. The 3D locations of these Gaussian
primitives are parameterized using their depth along the ray,
which is explicitly calculated using the known intrinsic and
extrinsic camera parameters from the input images.

Due to their reliance on known camera parameters, these
methods can not be directly used on “in-the-wild” uncal-
ibrated images. Ground truth poses are assumed to be
available, or camera pose estimation is implied as a pre-
processing step — existing methods are typically tested on
datasets where poses have been reconstructed by running
SfM software on dozens or hundreds of images of the same
scene. Methods which attempt to use SfM or multi-view
stereo (MVS) pipelines typically use a string of algorithms
for matching points, triangulating them, finding essential
matrices, and estimating camera extrinsics and intrinsics.

In this paper, we introduce Splatt3R, a feed-forward
model that takes as input two uncalibrated images, and out-
puts 3D Gaussians to represent the scene. Specifically, we
use a feed-forward model to predict pixel-aligned 3D Gaus-
sian primitives for each image, and then render novel views
using a differentiable renderer. We achieve this without re-
lying on any additional information such as camera intrin-
sics, extrinsics, or depth.

Without explicit pose information, one key challenge is
identifying where to place the 3D Gaussian centers. Even
with pose information, iterative 3D Gaussian Splatting op-
timization is susceptible to local minima [7, 29]. Our solu-
tion is to jointly address the lack of camera poses and the
problem of local minima by explicitly supervising and re-
gressing the ground truth 3D point clouds for each train-
ing sample. In particular, we observe that the architecture
used to produce MASt3R’s pixel-aligned 3D point clouds
[31] closely aligns with the existing pixel-aligned 3D Gaus-
sian splatting architectures using in feed-forward Gaussian
methods [7, 10, 51, 52]. Therefore, we seek to show that
simply adding a Gaussian decoder to a large-scale pre-
trained “foundation” 3D MASt3R model, without any bells
and whistles, is sufficient to develop a pose-free, generaliz-
able novel view synthesis model.

One notable limitation of most existing generalizable
3D-GS methods is that they only supervise novel view-
points which are between the input stereo views [7, 10],
rather than learning to extrapolate to farther viewpoints.
The challenge with these extrapolated viewpoints is that
they often see points that are obscured to the input camera
views, or are outside of their frustums entirely. Thus, super-
vising the novel view rendering loss for these points is coun-
terproductive, and can be destructive to the model’s perfor-
mance. By only supervising the novel view rendering loss
for views that are between the two context images, existing
works avoid attempting to reconstruct many unseen parts of
the scene. However, this means that the model is not trained
to accurately generate novel view renderings for views be-
yond the stereo baseline. To address this, we employ a loss
masking strategy based on frustum culling and covisibility
testing, calculated using the ground truth poses and depth
maps known during training. We apply mean squared error
and LPIPS loss only to the parts of the rendering that can
be feasibly reconstructed, preventing updates to our model
from unseen parts of the scene. This allows training with
wider baselines, and for supervising novel views that are
beyond the stereo baseline.

We present, for the first time, a method that predicts 3D
Gaussian Splats for scene reconstruction and novel view
synthesis from a pair of unposed images in a single forward
pass of a network. We construct baselines out of existing
work and show that our method surpasses them in visual
quality and perceptual similarity to the ground truth images.
More impressively, our trained model is capable of gener-
ating photorealistic novel view synthesis from in-the-wild
uncalibrated images. This significantly relaxes the need for
dense image inputs with precise camera poses, addressing a
major challenge in the field.

2. Related Work

2.1. Novel View Synthesis

Many representations have been used for 3D Novel
View Synthesis (NVS), such as luminagraphs [19], light
fields [32], and plenoptic functions [1]. Neural Radiance
Fields (NeRFs) have achieved photo-realistic representa-
tions of 3D scenes using view-dependent, ray-traced radi-
ance fields, encoded by neural networks trained through
per-scene optimization on densely collected image sets [3,
41, 42]. Recently, 3D Gaussian Splatting [29] has greatly
increased the training and rendering speed of radiance fields
by training a set of 3D Gaussian primitives to represent the
radiance of each point in space, and rendering them through
an efficient rasterization process.

To avoid intensive per-scene optimization, generalizable
NVS pipelines have been developed, which infer 3D repre-
sentations directly from multi-view images [8, 12, 27, 33,
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36, 37, 46, 49, 50, 56, 59, 63, 68]. Rather than perform-
ing per-scene optimization, these methods are trained across
large datasets of scenes, allowing data-driven priors to be
learned that can ground reconstruction for newly observed
scenes. By leveraging these data-driven priors, these meth-
ods have evolved to work with sparse image sets [10, 34, 38,
43] and even stereo image pairs [7, 16, 30, 69], significantly
reducing the number of reference images required to obtain
a radiance field for NVS.

Recent methods, such as pixelSplat [7], MVSplat [10],
GPS-Gaussian [68], SplatterImage [52] and Flash3D [52]
use a cloud of 3D Gaussian primitives placed along cam-
era rays explicitly calculated from camera parameters, aim-
ing to predict one (or multiple) 3D Gaussian primitives per-
pixel in each image. However, these existing methods as-
sume the availability of camera intrinsics and extrinsics for
each image at testing time, which limits their applicabil-
ity to in-the-wild photo pairs. Many methods have been
proposed for per-scene optimization with unknown camera
poses [4, 5, 25, 35, 58], however these depend on large
collections of images. Recent studies propose methods to
jointly predict camera parameters and 3D representations in
a generalizable manner, although these are limited to sparse
setups [26, 54]. In contrast, we propose Splatt3R to address
the gap in generalizable stereo NVS with unknown camera
parameters. Among closely related works, FlowCam [49]
removes the need for pre-computed cameras using dense
correspondences from optical flow, but it requires sequen-
tial input and shows limited rendering performance.

By integrating the recent stereo reconstruction work
MASt3R with 3D Gaussians, our method effectively han-
dles larger baselines without the need for pre-processed
cameras. GGRt [33] also seeks to model 3D Gaussian
Splats without known camera poses or intrinsics, but instead
focuses on processing video sequences with small baselines
between frames, introducing caching and deferred back-
propogation techniques to aid reconstruction from long
video sequences. DBARF [9] also aims to jointly learn cam-
era poses and reconstruct radiance fields, but uses a NeRF-
based approach and focuses on calculating poses using cost
maps derived from learned features.

2.2. Stereo Reconstruction

Traditionally, the stereo reconstruction task involves a se-
quence of steps. Starting with keypoint detection and fea-
ture matching [14, 20, 39, 53], camera parameters are es-
timated using fundamental matrices [40, 44, 67]. Next,
dense correspondence is established through epipolar line
search [2, 24, 28] or stereo matching [6, 64, 66], en-
abling the triangulation of 3D points [21–23]. This pro-
cess can be optionally refined by photometric bundle ad-
justment [13, 60]. With the advent of deep learning, numer-
ous methods have been proposed to integrate certain steps,

such as joint depth and camera pose estimation, and optical
flow [11, 17, 18, 55, 62, 65]. However, all these methods
rely on explicit correspondence, making them challenging
to apply when the overlap between images is limited.

Recently, DUSt3R [57] introduced an innovative ap-
proach to address this challenge by predicting point maps
for a pair of uncalibrated stereo images in one coordi-
nate system with implicit correspondence searching. The
follow-up paper MASt3R [31] primarily focuses on im-
provements to image matching, but improves on DUSt3R
by predicting points in metric space and achieving greater
accuracy. These methods have shown promising stereo re-
construction results even when there is little or no overlap
between the images. While the raw point maps are suf-
ficiently accurate for several downstream applications like
pose estimation, they are not designed to be directly ren-
dered. In contrast, our method augments MASt3R to pre-
dict 3D Gaussian primitives, which enables fast and photo-
realistic NVS.

3. Method
Given two uncalibrated images I = {Ii}i={1,2}, (Ii ∈
RH×W×3), our goal is to learn a mapping Φ that takes as
input I and outputs 3D Gaussian parameters for both ge-
ometry and appearance. We achieve this by simply adding
a third branch to MASt3R to output the additional attributes
required for 3D Gaussians. Before outlining the details of
our proposed method, we provide a brief overview of 3D
Gaussian Splatting in Sec. 3.1, followed by an overview
of MASt3R in Sec. 3.2. We then describe how we mod-
ify the MASt3R architecture to predict 3D Gaussian Splats
for novel view synthesis in Sec. 3.3. Finally, we outline our
training and evaluation protocols in Sec. 3.4.

3.1. 3D Gaussian Splatting

Scenes as sets of 3D Gaussians. We begin by briefly re-
viewing 3D Gaussian Splatting (3D-GS) [29]. 3D-GS
represents the radiance field of a scene using a set of
anisotropic, 3D Gaussians, each of which represents the ra-
diance emitted in the spatial region around a point. Each
Gaussian is parameterized using its mean position µ ∈ R3,
opacity α ∈ R, covariance Σ ∈ R3×3 and view-dependent
color S ∈ R3×d (here parameterized using d-degree spher-
ical harmonics). Like other works, we reparameterize the
covariance matrix with a rotation quaternion q ∈ R4 and
scale s ∈ R3 to ensure positive semi-definite covariance
matrices. In our experiments, we focus on constant, view-
independent color for each gaussian (S ∈ R3), and ablate
view-dependent spherical harmonics. Original 3D-GS uses
an iterative process to fit the Gaussian Splats to a single
scene, but Gaussian primitives have vanishingly small gra-
dients if the distance to their ‘correct’ location is greater
than a few standard deviations, and can often get stuck in
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Figure 2. Method overview. We encode the two uncalibrated images using MASt3R’s pretrained ViT encoder and cross-attention trans-
formers, which we freeze during training. In addition to MASt3R’s prediction head for point positions and confidences, we introduce a
Gaussian head that predicts offsets, spherical harmonics, rotations, scales and opacities. We supervise novel renderings of the generated
3D Gaussian Splats using mean squared error (MSE) and LPIPS.

local optima during optimization [7]. 3D-GS partially over-
comes these problems using initialization from SfM point
clouds and non-differentiable ‘adaptive density control’ to
split and prune gaussians [29]. This method is effective, but
requires a dense collection of images, and cannot be used
for generalizable, feed-forward models, which directly pre-
dict Gaussians without per-scene optimization.

Feed-forward 3D Gaussians. Very recently, given a set of
N images I = {Ii}Ni=1, the generalizable 3D-GS meth-
ods [7, 10, 51, 52] predict pixel-aligned 3D Gaussian Prim-
itives. In particular, for each pixel u = (ux, uy, 1), the pa-
rameterized Gaussian is predicted with its opacity α, depth
d, offsets ∆, covariance Σ expressed as rotation and scale,
and the parameters of the colour model S. The location
of each Gaussian is given by µ = K−1ud + ∆, where
K is the camera intrinsics. Of particular note, pixelSplat
predicts a probabilistic distribution over depth, which seeks
to avoid the problem of local minima by tying the prob-
abilistic density to the opacity of the Gaussian primitives
sampled [7]. However, these parameterizations cannot be
directly applied to 3D-GS prediction from uncalibrated im-
ages, which have unknown camera rays. Instead, we di-
rectly supervise the positions of per-pixel Gaussian prim-
itives using ‘ground-truth’ point clouds. This allows the
Gaussian corresponding to each pixel to have a direct path
of monotonically decreasing loss leading to its correct posi-
tion during training.

3.2. MASt3R Training

As discussed, we wish to directly supervise the 3D location
of each pixel in a pair of uncalibrated images. This task
has recently been explored by DUSt3R [57] (and its follow-
up work MASt3R [31]), a multi-view stereo reconstruction
method that directly regresses a model for predicting 3D
point clouds. For simplicity, we collectively refer to these
methods as ‘MASt3R’ for the remainder of the paper.

Given two images I1, I2 ∈ RW×H×3, MASt3R learns
to predict the 3D locations for each pixel X̂1, X̂2 ∈

RW×H×3, alongside corresponding confidence maps
C1, C2 ∈ RW×H . Here, the model aims to predict both
point maps in the coordinate frame of the first image, which
removes the need for transforming point clouds from one
image’s coordinate frame to the other using camera poses.
This representation, like generalizable 3D reconstruction
approaches, assumes the existence of a single, unique lo-
cation where the ray corresponding to each pixel intersects
with the surface geometry, and does not attempt to model
non-opaque structures like glass or fog.

Given ground truth pointmapsX1 andX2, for each valid
pixel i in each view v ∈ {1, 2}, the training objective Lpts

is defined as:

Lpts =
∑

v∈{1,2}

∑
i

Cv
i Lregr(v, i)− γ log(Cv

i ) (1)

Lregr(v, i) =

∥∥∥∥1zXv
i − 1

z̄
X̂v

i

∥∥∥∥ (2)

Lpts is a confidence-based loss used to handle points with
ill-defined depths, such as points corresponding to the sky,
or to translucent objects. The hyperparameter γ governs
how confident the network should be, while z and z̄ are
normalization factors used for non-metric datasets (set to
z = z̄ = 1 for metric datasets). In our experiments, we use
a frozen MAST3R model pre-trained with this objective,
and only apply novel view rendering losses during training.
We experiment with fine-tuning using this loss in Tab. 2.

3.3. Adapting MASt3R for Novel View Synthesis

We now present Splatt3R, a feed-forward model that pre-
dicts 3D Gaussians from uncalibrated image pairs. Our key
motivation derives from the conceptual similarity between
MASt3R and generalizable 3D-GS models, such as pixel-
Splat [7] and MVSplat [10]. First, these methods all use
feed-forward, cross-attention network architectures to ex-
tract information between input views. Second, MASt3R
predicts pixel-aligned 3D points (and confidence) for each
image, whereas generalizable 3D-GS models [7, 10, 51, 52]
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predict pixel-aligned 3D Gaussians for each image. Thus,
we follow the spirit of MASt3R, and show that a simple
modification to the architecture, alongside a well-chosen
training loss, is sufficient to achieve strong novel view syn-
thesis results.

Formally, given a set of uncalibrated images I, MASt3R
encodes each image Ii simultaneously using a vision trans-
former (ViT) encoder [15], then passes them to a trans-
former decoder which performs cross-attention between
each image. Normally, MASt3R has two prediction heads,
one that predicts a 3D point (x) and confidence (c) for
each pixel, and a second which is used for feature match-
ing, which is not relevant to our task, and can be ignored.
We introduce a third head, which we refer to as the ‘Gaus-
sian head’, that runs in parallel to the existing two heads.
This head predicts covariances (parameterized by rotation
quaternions q ∈ R4 and scales s ∈ R3), spherical harmon-
ics (S ∈ R3×d) and opacities (α ∈ R) for each point. Ad-
ditionally, we predict an offset (∆ ∈ R3) for each point,
and parameterize the mean of the Gaussian primitive as
µ = x+∆. This allows us to construct a complete Gaussian
primitive for each pixel, which we can then render for novel
view synthesis.

During training, we only train the Gaussian prediction
head, relying on a pre-trained MASt3R model for the other
parameters. Following MASt3R’s point prediction head, we
use the DPT architecture [45] for our Gaussian head. An
overview of the model architecture is shown in Fig. 2.

Following existing generalizable 3D-GS works, we use
different activation functions for each Gaussian parameter
type, including normalization for quaternions, exponential
activations for scales and offsets, and sigmoid activations
for opacities. Additionally, to aid in the learning of high-
frequency color, we seek to predict the residual between
each pixel’s color and the color we apply to that pixel’s cor-
responding Gaussian primitive.

Following MAST3R’s practice of predicting the 3D lo-
cations of all points in the first image’s camera frame, the
predicted covariances and spherical harmonics are consid-
ered as being in the first image’s camera frame. This avoids
the need to use ground truth transformations to convert these
parameters between reference frames, which existing meth-
ods do [7]. The final set of Gaussian primitives is the union
of the Gaussian primitives predicted from both images.

3.4. Training Procedure and Loss Calculation

To optimize our Gaussian parameter predictions we super-
vise novel view renderings of the predicted scene, as in
existing work [7, 10, 52]. During training, each sample
consists of two input ‘context’ images which we use to re-
construct the scene, and a number of posed ‘target’ images
which we use to calculate rendering loss.

Some of these target images may contain regions of the

Context ViewsTarget View

In Frustum Matching Depth

Loss Mask

Valid Pixel

Figure 3. Our loss masking approach. Valid pixels are consid-
ered to be those that are: inside the frustum of at least one of the
views, have their reprojected depth match the ground truth, and are
considered valid pixels with valid depth in their dataset.

scene that were not visible to the two context views due
to being obscured, or outside of the context view frus-
tums entirely. Supervising the rendering loss for these pix-
els would be counterproductive and potentially destructive
to the model’s performance. Existing generalizable, feed-
forward radiance field prediction methods attempt to avoid
this problem by only synthesizing novel views for view-
points that are between the input stereo views [7, 10, 16],
reducing the number of unseen points that need to be re-
constructed. Instead, we seek to train ours to extrapolate to
farther viewpoints that are not necessarily an interpolation
between the two input images.

To address this, we introduce a loss masking strategy.
For each target image, we calculate which pixels are vis-
ible in at least one of the context images. We unproject
each point in the target image and reproject it onto each of
the context images, checking if the rendered depth closely
matches the ground truth depth. We show the construction
of an example loss mask Fig. 3.

Like existing generalized 3D-GS approaches [7, 10, 52],
we train using a weighted combination of mean squared er-
ror loss (MSE) and perceptual similarity. Given, our ren-
dered images (̂I), ground truth images (I), and rendered loss
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Close (ϕ = 0.9, ψ = 0.9) Medium (ϕ = 0.7, ψ = 0.7) Wide (ϕ = 0.5, ψ = 0.5) Very Wide (ϕ = 0.3, ψ = 0.3)

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Splatt3R (Ours)
19.66

(14.72)
0.757

-
0.234

(0.237)
19.66

(14.38)
0.770

-
0.229

(0.243)
19.41

(13.72)
0.783

-
0.220

(0.247)
19.18

(12.94)
0.794

-
0.209

(0.258)

MASt3R (Point Cloud)
18.56

(13.57)
0.708

-
0.278

(0.283)
18.51

(12.96)
0.718

-
0.259

(0.280)
18.73

(12.50)
0.739

-
0.245

(0.293)
18.44

(11.27)
0.758

-
0.242

(0.322)

pixelSplat (MASt3R cams)
15.48

(10.53)
0.602

-
0.439

(0.447)
15.96

(10.64)
0.648

-
0.379

(0.405)
15.94

(10.14)
0.675

-
0.343

(0.394)
16.46

(10.12)
0.708

-
0.302

(0.373)

pixelSplat (GT cams)
15.67

(10.71)
0.609

-
0.436

(0.443)
15.92

(10.61)
0.643

-
0.381

(0.407)
16.08

(10.33)
0.672

-
0.407

(0.392)
16.56

(10.20)
0.709

-
0.299

(0.370)

Table 1. Comparisons with the state of the art. Performances are averaged over test scenes in ScanNet++. For each scene, the model
takes two, unposed images as input and renders novel views for evaluation. Splatt3R shows improvements on all visual metrics.

masks M , the masked reconstruction loss is:

L = λMSELMSE(M ⊙ Î,M ⊙ I)

+ λLPIPSLLPIPS(M ⊙ Î,M ⊙ I)
(3)

During training, existing methods [7, 10, 51] assume that
the images of each scene are in a video sequence. These
methods use the number of frames between chosen context
images as a proxy for the distance and overlap between the
images, and select intermediary frames as the target frames
for novel view synthesis supervision. We seek to generalize
this approach to work with datasets of frames that are not in
the form of a linear sequence, and to allow supervision from
views that are not in-between the context images. During
preprocessing, we calculate the overlap masks for each pair
of images for each scene in the training set. During training,
we select context images such that at least ϕ% of the pixels
in the second image have direct correspondences in the first,
and target images such that at least ψ% of the pixels are
present in at least one of the context images.

4. Experimental Results
Next, we describe our experimental setup (Sec. 4.1), eval-
uate our method with a comparison to baselines (Sec. 4.2),
and assess the significance of our model’s components with
an ablation study (Sec. 4.3).

4.1. Training and Evaluation Setup

Training details. During each epoch, we randomly sam-
ple two input images, and three target images from each
scene in the training split. As described in Section 3.4,
we select views using ϕ and ψ parameters which we set
at ϕ = ψ = 0.3. We train our model for 2000 epochs
(≈ 500,000 iterations) at a resolution of 512 × 512, using
λMSE = 1.0 and λLPIPS = 0.25. We optimize using the
Adam optimizer at learning rate of 1.0×10−5, with a weight
decay of 0.05, and a gradient clip value of 0.5.

Training data. We train our model using ScanNet++ [61],
which is a dataset of 450+ indoor scenes with ground truth

depth obtained from high-resolution laser scans. We use the
official ScanNet++ training and validation splits.

Testing datasets. We construct four testing subsets from
ScanNet++ scenes to represent close together views (for
high ϕ and ψ) and farther views with less overlap (for low ϕ
and ψ). The test scenes are not seen during training. We ig-
nore the frames marked as ‘bad’ in the ScanNet++ dataset,
and scenes that contain frames with no valid depth.

Metrics are calculated after applying the loss masks to
the rendered and target images. Metrics are reported both
across the entire image, and averaging across just the pixels
in the loss mask (in parenthesis for PSNR and LPIPS).

Baselines. To the best of our knowledge, Splatt3R is the
first model that performs 3D reconstruction from a wide,
unposed, stereo pair of images for novel view synthesis in
a feed-forward manner. To evaluate our method, we con-
struct baselines from existing works. We test our method
against directly rendering MASt3R’s prediction as a col-
ored point cloud, giving each point the color of its cor-
responding pixel. We wish to reconstruct and render the
entire 3D scene, therefore we do not filter out points with
low confidences from our point cloud renderings. We also
compare our method against pixelSplat [7], a generalizable
3D-GS reconstruction method that requires poses for re-
construction. We evaluate pixelSplat using ground truth
camera poses, and also using camera poses estimated us-
ing the point clouds predicted from MASt3R. Please see
the MASt3R paper for details on pose regression from
MASt3R’s predictions [31]. We retrain baselines with the
same dataloaders and training curricula where appropriate
to present a fair comparison. Due to memory constraints
when training pixelSplat, we train at 256x256, and initialize
the model using the pretrained weights from the pixelSplat
authors. We observe that when trained using the same data
schedule, pixelSplat achieves very low accuracy. Therefore
we adapt pixelSplat’s curriculum learning strategy for our
data, initially training the model at ϕ = ψ = 0.7, and de-
creasing these values to ϕ = ψ = 0.3 at the end of training.
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Figure 4. Qualitative comparisons on ScanNet++. We compare different methods on ScanNet++ testing examples. The two context
camera views for each image are included in the first row of the table.

Figure 5. Examples of Splatt3R generalizing to in-the-wild test-
ing examples. The bottom row showcases examples with few di-
rect pixel correspondences between the two context images.

4.2. Results

Quantitative evaluation. We begin by reporting our quan-
titative results for ScanNet++ in Tab. 1. Our method outper-
forms both directly rendering the MASt3R point cloud, and
reconstructing the scene using pixelSplat across all stereo
baseline sizes. Critically, we find that our method outper-

forms pixelSplat even when pixelSplat is evaluated using
the ground truth poses for each camera. When trained us-
ing the stereo baselines in our dataset, and when supervised
from viewpoints which contain information not visible to
the input cameras, we observe that the quality of reconstruc-
tions from pixelSplat significantly degrades.

Qualitative comparisons. Next, we provide a qualitative
comparison of each method using examples from Scan-
Net++ in Fig. 4. We see that our method, like MASt3R
is able to reconstruct the visible regions of the scene, while
not attempting to reconstruct areas which are not visible to
the context views. By masking our novel view rendering
loss, our model does not learn to guess unseen regions of
the scene. pixelSplat has a very poor reconstruction qual-
ity, visibly attempting to predict regions of the scene which
cannot be seen from the input context views, and achiev-
ing poor accuracy even in reconstructable regions of the
scene. We also note the visual artifacts which are present
when directly rendering the point clouds from MASt3R.
Our learned 3D Gaussian representation is able to reduce
the number of these artifacts, resulting in marginally higher
quality renderings.

Here, we also note that our model is reconstructing the
scene in metric scale. We can observe the accuracy of this
scale prediction by noting how closely the viewpoint of the
rendered image matches the ground truth image taken from
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Close (ϕ = 0.9, ψ = 0.9) Medium (ϕ = 0.7, ψ = 0.7) Wide (ϕ = 0.5, ψ = 0.5) Very Wide (ϕ = 0.3, ψ = 0.3)

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ours
19.66

(14.72)
0.757

-
0.234

(0.237)
19.66

(14.38)
0.770

-
0.229

(0.243)
19.41

(13.72)
0.783

-
0.220

(0.247)
19.18

(12.94)
0.794

-
0.209

(0.258)

+ Finetune w/ MASt3R
20.97

(16.03)
0.780

-
0.199

(0.201)
20.41

(15.13)
0.781

-
0.214

(0.226)
20.00

(14.32)
0.793

-
0.207

(0.232)
19.69

(13.45)
0.803

-
0.197

(0.241)

+ Spherical Harmonics
18.04

(13.10)
0.730

-
0.254

(0.257)
18.57

(13.29)
0.752

-
0.248

(0.259)
18.50

(12.82)
0.768

-
0.236

(0.262)
18.40

(12.16)
0.781

-
0.226

(0.272)

- LPIPS Loss
19.62

(14.68)
0.763

-
0.277

(0.282)
19.65

(14.37)
0.776

-
0.261

(0.278)
19.41

(13.73)
0.787

-
0.245

(0.278)
19.22

(12.98)
0.797

-
0.230

(0.285)

- Offsets
19.38

(14.44)
0.757

-
0.249

(0.252)
19.25

(13.97)
0.775

-
0.242

(0.256)
19.14

(13.46)
0.792

-
0.225

(0.253)
19.09

(12.85)
0.805

-
0.209

(0.255)

- Loss Masking N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 2. Ablations on the ScanNet++ dataset. When trained without loss masking, the memory requirements of rendering grow until
training cannot continue.

Method Pose Est. Encoding

Ours - 0.268
MASt3R (Point Cloud) - 0.263
PixelSplat (w/ MASt3R poses) 10.72 0.156

Table 3. Average time in seconds required for position estimation
(if relevant) and scene prediction.

that location. In only a few instances, such as the exam-
ple in the third column, is there a significant misalignment
between our rendered image and the ground truth image.

In Fig. 5, we attempt to generalize from our model,
trained on ScanNet++, to real world data captured by a mo-
bile phone. By only training our Gaussian head, we main-
tain MASt3R’s ability to generalize to different scenes, such
as the outdoor scene in the top left of the figure. Our pre-
dicted Gaussians are able to generalize from object-scale
scenes up to large outdoor environments. We make a par-
ticular note of the bottom row of Fig. 5, where we show
examples of reconstructing a scene from two images with
little or no direct pixel correspondences, due to being taken
directly side-by-side or from opposite sides of the same ob-
ject. Traditional multi-view stereo systems based on im-
age correspondences would fail in these scenarios, however
MASt3R’s data-driven approach allows these scenes to be
reconstructed accurately.

Runtime comparisons. Next, we benchmark the time
taken to reconstruct poses and perform scene reconstruction
using each of these methods. Our method, and MASt3R,
do not need to perform any explicit pose estimation, as all
points and Gaussians are directly predicted in the same co-
ordinate space. We see that our method can reconstruct
scenes at ~4 FPS on an RTX2080ti at 512x512 resolution.
Because pixelSplat needs to use MASt3R and perform ex-

plicit point cloud alignment to estimate the poses of the im-
ages, our total runtime is significantly less than the time
taken to estimate the poses for pixelSplat.

4.3. Ablation studies

In Tab. 2, we run ablations on our method. We find that fine-
tuning our MASt3R’s 3D point predictions to ScanNet++
improves testing performance on ScanNet++, but we omit
this finetuning from our other experiments for fair compari-
son with MASt3R. When training with spherical harmonics
(with a degree of 4) instead of constant color Gaussians, we
find that our performance decreases, likely due to overfit-
ting spherical harmonics to our collection of training scenes.
Like other works, we find that using an LPIPS loss term
meaningfully increases the visual quality of the reconstruc-
tions. Our introduced offsets slightly improve performance
across all metrics as well. Finally, if we omit our loss mask-
ing strategy, we find that the size of the Gaussians grows in
an unbounded manner, until the memory cost of rendering
the Gaussians causes training to halt.

5. Conclusion

We present Splatt3R, a feed-forward generalizable model
for generating 3D Gaussian Splats from uncalibrated stereo
images, without relying on camera intrinsics, extrinsics, or
depth information. We find that simply using the MASt3R
architecture to predict 3D Gaussian parameters, in combi-
nation with a loss-masking strategy during training, allows
us to accurately reconstruct both 3D appearance and geom-
etry from wide baselines. As we demonstrate in our experi-
ments, Splatt3R outperforms both MASt3R and the current
state-of-the-art in feed-forward splatting.
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